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MODIFIED WIENER–HOPF EQUATION
IN IDENTIFICATION PROBLEMS
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The method of adaptive fi ltration in the tasks of fl ow settings of cosmic radiation recovery by the measured data for 
the use in cosmic transport systems with a long life cycle was shown in the article. Optimization mathematic model 
and algorithm of non-stationary control systems, in which the measurement is made against the background of the 
noise, are described. Parametric optimization algorithms are done by the use of modifi ed Wiener-Hopf equation and 
function of sensitivity.  
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INTRODUCTION

THE PROBLEM OF THE NON-STATIONARY
OBJECT IDENTIFICATION

Optimality conditions

It is proposed to consider the construction of the basic 
design of non-stationary control systems optimization 
algorithms, whose state measurement is performed 
against a background of interference [1, 2, 3]. The con-
cept developed in the process of optimization algorithms 
construction can be used to solve a wide range of prob-
lems - from the identifi cation system construction and the 
solution of fi ltering non-stationary processes tasks to the 
construction of parametric control algorithms for non-sta-
tionary objects.
For defi niteness, let the object be described by an ordi-
nary differential equation

(1.1)

and measuring its state
                            y(t)=Cx(t)+n(t),                               (1.2)
where xϵRn, yϵRm, n≥m, w(t) and n(t) - Gaussian noise; 
where as E[w(t)]=0,E[n(t)]=0,
E - sign of expectation and

 - Dirac function, T − transpose sign.
Note that change in time in the vector-function f(x,u,w,t)   
occurs as a result of  the fact that the parameters of this 
vector-function are under the infl uence of external per-
turbations. i.e. f(x,u,w,t)=f(x,u,w,η(t)), where η(t) - the ob-
ject parameters that vary according to an unknown law, 
and, whereas

Let
(1.3)

where  - process estimation - solution of the 
differential equation.

(1.4)

ε(t)ϵRk - observation error, LϵR, ψϵR - linear operators 
that transform Rn→Rk and Rq→Rk correspondently, αϵRl  

- vector of model optimization parameters. Suppose that 
the function   twice differentiable with respect to α(t).
It should be noted that the step of model structure choice 
is extremely responsible. The appropriateness, applica-
bility and effectiveness of the evaluation design essential-
ly depend on the reliability with which the mathematical 
model describes the actual situation (object, measure-
ments, and external parametric disturbances). In most 
practical problems, a complete, accurate model is not 
available at all, and its construction has great diffi culties, 
and therefore the problem of evaluation design for the 
measured process y(t) must be solved with incomplete 
knowledge of the model. Even more complicated is the 
problem, when the noise w(t) and n(t) and/or the object  
parameters (2.1) change in an uncontrolled manner.
In addition, stochastic object state determination de-
scribed by nonlinear differential equations, from mea-
surements of its phase components against a noise 
background, requires the solutions of nonlinear differ-
ential equations. Moreover, the exact construction, for 
example, of a nonlinear fi lter is impossible and, what is 
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very important, the estimation of the accuracy of approx-
imation for a suboptimal realization of a nonlinear fi lter is 
either diffi cult or impossible.
Quadratic functionals are often used while synthesis of 
optimal systems.

(1.5)
Before fi nding the general minimum condition for a func-
tional of the form (2.5), we note that a suffi ciently large 
number of control objects models can be described with 
the help of systems of linear differential equations with 
incomplete information on parameters and the state vec-
tor. For such models, it is fair

(1.6)
where  - the space of linear operators with 
optimization parameters α(t).
In the general case, restrictions can be imposed on the 
linear operator  structure and parameters, i.e. 
operator 1, where , has an invol-
untary (predetermined) structure.
We show that the optimal operator       

where α◦(t) - the operator optimization parameters 
, for which  the minimum gives the 

functional (2.5), satisfi es condition (1.7)

where  - zero linear operator.
For the Gaussian processes and linear operators condi-
tion (1.6) is a necessary and suffi cient condition for the 
minimum of the functional (1.5) and has the form of the 
Wiener-Hopf equation. To prove this proposition, we in-
troduce

(1.8)
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Here  − linear nonzero opera-
tor λ −  weight coeffi cient.
Taking into consideration that the operator    
coincides with the optimal operator  only 
when λ=0, we will get

 when λ=0,

i.e. 

where λ=0.

As a result, we obtain an expression that coincides with 
(1.6).
A condition of the form (1.7) can be obtained if we inves-
tigate the functional when α(t)=α◦(t).
The optimality conditions will have the form:

Here   − leaner operator.

If the operators and its model space is linear, condition 
(1.6) is a necessary and suffi cient condition for the min-
imum of the functional (1.5). Generally, when the space 
of the object operators and its model is arbitrary, condi-
tion (1.6) is suffi cient and additional restrictions on the 
type of these operators are required to obtain the neces-
sary conditions.
Thus, equation (1.6) for linear operators can have only 
one solution. The following issue remains open – is there 
a solution at all. However, the question of the existence 
of  equation (1.6)  solution  is found automatically in all 
cases when it is possible to fi nd  the solution to this equa-
tion.
Theorem 1. Let an object be described by an ordinary 
differential equation

and measurements of its state y(t)=Cx(t)+n(t), where 

xϵRn, yϵRm, n≥m, w(t) and n(t) - centered Gaussian noise.
Then the optimal operator   
where R the space of linear operators, α◦(t) - the values 
of the operator optimization parameter , 
under which  gives the minimum to the functional

, satisfi es condition 

The basic optimization algorithms
design in identifi cation problems

We make a number of assumptions about the object. Let 
the object be described by a nonlinear differential equa-
tion

The vector-function f(x,u,w,t) contains parameters η(t)
ϵRη that vary under the infl uence of external perturba-
tions, i.e. f(x,u,w,t)= f(x,u,w,η(t)), and allows differentia-
tion with respect to the set of variables the required num-
ber of times. The object model is a model described by 
the equation:
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(1.9)

The identifi cation quality criterion in this problem has the 
form

(1.10)

Here F(ε(t,α,η))=εT(t,α,η)ε(t,α,η) − loss function.

(1.11)

One can use the following algorithm [4] in problems of 
non-stationary object identifi cation  by its mathematical 
model with parametric optimization 
Let us fi nd a condition in which   the necessary properties 
to the optimization process provide the algorithms of the 
form (1.11). This condition has the form

Taking into account (1.11) and the fact that the functional 
(1.9) does not depend explicitly on t, we obtain

Obviously, this condition will be satisfi ed if the speed of 
the adjustment of the model  parameters satisfi es the 
condition

(1.12)

(1.13)

rameters (1.9). This ensures "transfer" of the quality 
functional from any peripheral values to its minimum val-
ue asymptotically.
The assumption of observability of the object and the in-
equality (1.12) form necessary and suffi cient conditions 
for the identifi ability of the non-stationary system.
For quadratic functionals of the form (1.5), the optimiza-
tion algorithm has the form (1.11)

Thus, the fulfi llment of condition (1.12) guarantees the 
successful changes "tracking" in the object parameters 
with the chosen algorithms for changing the model pa-

As for the value of the quality functional (1.5), adopted 
when implementing an identifi cation system with optimi-
zation algorithms of the type (1.11),there is the ratio

THE MODIFIED WIENER-HOPF EQUATION
IN PROBLEMS OF FILTERING
NON-STATIONARY PROCESSES

We consider the problem of vector of a random Gauss-
ian Markov process estimation construction in the space 
from measurements of a part of its coordinates produced 
against a noise background. Despite longitudinal re-
search in this fi eld, interest in such tasks is not weak-
ened, which, for example, is confi rmed by a number of 
reports made at [5].
Let a useful process be specifi ed as the result of pass-
ing nonstationary Gaussian white noise through a linear 
dynamical system

(2.1)

The measured process is specifi ed
                               y(t)=Cx(t)+n(t)                            (2.2)
In (2.1) and (2.2) xϵRn, yϵRm, wϵRr, nϵRm. Nonstationary 
processes w(t) and n(t) - white Gaussian centered nois-

es with intensities W(t)  and  N(t). The pair  are 
observed.
There is no loss of generality in supposing that noises 
w(t) and n(t) are not correlated and

[x(t0)w
T(t)]=0, M[x(t0) n

T(t)]=0.
Defi ned problem of construction of the failure in the 
least- deviation sense
                                 J(ε)=E[εT(t)ε(t)]                         (2.3)
where

ε(t)= x(t) - 
 - effi ciency process assessment, known as optimum 

fi ltering problem.   
Kalman-Bucy fi lter [1] is written as

(2.4)

(2.5)

(2.6)

where P(t)=E[ε(t)εT(t)] - deviation error matrix, that is 
solution of the Riccati equation type (2.7).
Integral of a differential equation in this case will be fi lter-
ing error (2.8).
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(2.7)

(2.8)

Note that optimal fi lter (2.5) has a structure of the effi -
ciency process generator (2.1) and matrixes A(t), B(t), 
W(t) and E(t) completely specify its parameters. In this 
respect fi lter can be thought of as an effi ciency process 
model. 
Implementation of the fi lter as (2.5)–(2.7) is impossible 
if matrixes A(t), B(t), W(t) and E(t) vary in time over un-
known law. 
A tentative assumption should be made to construct a 
fi lter with parametric optimization. We assume that 

A(t)=A+a(t), B(t)=B+b(t).
Then we can rewrite equation (3.1) as

(2.9)

(2.10)

where a(t), b(t) - matrixes of perturbation parame-
ters, w*(t) - stationary white noise with the intensity W* 

(non-stationary nature of the process w(t) is "taken" into 
changing of the parameters of the matrix b(t)).
We assume that matrix of non-stationary white noise in-
tensities  can be conceived of as E(t)=E+δ(t).
We also assume that uncertainty has interval character, 
i.e. the following inequations subsist:

(underline – minimum, overline – maximum).
The main structure of the fi lter will be constructed the 
following way

(2.11)

where matrix K* estimate as solution of the equation:
                       K*=P*CN-1.      (2.12)
where P* positive defi nite matrix of Riccati algebraic 
equation solution
AP*(t)+P*(t)AT-P*(t)CTN-1CP*(t)+BW*BT=0.
Solutions (2.13) and (2.12) are realized at the non-sta-
tionary fi lter design stage.

(2.13)

Thus, fi lter is constructed with an accuracy to parameter 
point of matrixes ϕ(t) and k(t), which optimize fi lter op-
eration for the purpose of functional (2.3) while getting 

(2.14)

appropriate information.
Optimizing algorithm realization. In the case under study 
necessary and suffi cient condition of the functional min-
imum (2.3) is described by the Wiener-Hopf equation:
Here a nonzero linear operator L(t) transforms a vector 
yϵRm into a vector zϵRm. Thus, the optimality condition 
(2.14) is achieved in the space of vectors ε(t) and, when 

. The condition (2.14) of the optimality 
of the estimation (2.11), as noted above, must be satis-
fi ed for any non-zero linear operator L(t)ϵR.
Taking into account the method of optimization algo-
rithms forming proposed in Section 1 of the article (for 
example, algorithm (1.12)), the condition (2.14) should 
be the base of the algorithms for parametric optimization 
(identifi cation) of the fi lter (2.11). However, estimated al-
gorithms would be unrealizable, because of the need for 
having the process  available.
To construct realizable algorithms for fi lter optimization 
(2.11), we introduce the functional

J1 (e(t),e(t1 ) )=tr E [eT (t)e(t1) ],
where:

1( ) ( ) ( ), ( ) ( ) ( ), 0e t y t Cx t e t y t Cx t         

time shifting.  
Defi nition 1: Two functionals introduced to evaluate 
the solution of the fi ltration problem are equivalent if 
they reach their minima for the same values of the fi lter 
parameters. In this case, the values of the minima can 
be different.
For  small values of the shift , in comparison with the 
dynamics of the model (2.11), the functional (2.15) is 
equivalent in the above sense to the original functional 
(2.3). In view of (2.14), we write the expression for the 
functional (2.15)

(2.15)

(2.16)
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To fi nd the values of the expression E[e(t) nT (t1)], we 
assume that Φ(t,τ)  is a fundamental matrix of solutions 

due to the fact that E[ε(t) nT (t1) ]=0, E[w(t) nT (t1) ]=0 

of the differential equation (2.8). Then

and E[n(t) nT (t1 ) ]=0 where t1 = t + γ, γ ≠ 0 
Thus

(2.17)

Comparing (2.17) and (2.3), we can conclude that 
the functional (2.17) reaches a minimum for the same 
values of the fi lter parameters as the functional (2.3). In 
this sense, these functionals are equivalent; i.e. 

J1 (e(t),e(t1) ), J(ε).
It is easy to see that the necessary conditions for the 
minimum of the functional (2.17) have the form

(2.18)

Here the operator L1 (t) converts the vector y ϵ Rm into a 
vector z1 ϵ R

m.
Defi nition 2: The necessary and suffi cient condition 
(3.18) for the minimum of the functional 
J1 (e(t),e(t1)) = trCE [ε(t) εT (t1)] C

T, t1=t+γ, γ ≠ 0, will be 
called the modifi ed Wiener-Hopf equation.

If, in (2.18), we substitute the expression for y(t) (2.2), 
then it can be shown that condition (2.18) is necessary 
and suffi cient for the minimum of both the functional 
(2.17) and the functional (2.3). Really,

due to the fact that E[x̂(t0)n
T(t1) ]=0 and 

E[n(t)nT(t1)]=0, i.e.
trE[{y(t)-Cx̂(t)} {L1(t1)y(t1)}

T]=trCE[{x(t)-x̂(t)} {L1(t1)y(t1)}
T]=0,

L1(t1)=CL(t1), t1=t+γ.
Theorem 2. For the system

0 0( ) ( ) ( ) ( ) ( ), ( ) ,

( ) ( ) ( ),

d x t A t x t B t w t x t x
dt
y t Cx t n t

  

 

where E[x(t0) w
T(t)]=0,E[x(t0) n

T (t)]=0, E[w(t) nT (t)]=0,    
functional
J1(e(t),e(t1))=E[eT (t),e1(t1)],  e(t)=y(t)-Cx̂(t),t1=t+γ,γ≠0,
the necessary and suffi cient conditions for a minimum 
of which have the form
E[{y(t1)-Cx̂(t1)}

T {L1(t) y(t)}]=E[{y(t)-Cx̂(t)}T {L1(t1) y(t1)}]=0,
reaches a minimum under the same values of the fi lter 
parameters as the functional
J(ε)=E[εT(t) ε(t)]
the necessary and suffi cient conditions for a minimum 
of which have the form
E{x(t)-x̂(t)}T {L(t)y(t)}=0.
These functionals are equivalent in the sense of 
Defi nition 1.

ALGORITHMS OF PARAMETRIC OPTIMIZATION

Equation (1.12) is based on the design of fi lter optimiza-
tion algorithms (1.12). We will carry out some additional 
constructions. We arrange the vectors ϕ*(t) and k*(t) the 
dimension of both n2 × 1 and (n*m) × 1 from the matrix 
elements ϕ(t) and k(t), respectively.
Taking into account what was said in Subsection 1.2, 
we will represent the design of optimization algorithms 
in the form of:

(3.1)

(3.2)

here Пϕ(t) and Пk(t) − linear operators that transform  
m-dimensional vector into dimension matrices 
(n*n) × m and (n*m) × m and, respectively.
We fi rst consider the case when the parameters of the 
matrices a and b are constant but not known. When 
choosing operators Пϕ(t) and Пk(t) we require that the 
optimization process, i.e. the transfer of the quality func-
tional from its peripheral values to a minimum, had the 
property of asymptotics. This means that the following 

condition must be met 1 1
ˆ( ( ), ( )) 0d J y t x t

dt
 , i.e..

(3.3)
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Since the functional in the case under consideration 
does not depend explicitly on t, and y(t) does not 
depend on the optimization parameters φ*(t) and k*(t), 
condition (3.3), taking into account (3.15), can be rewrit-
ten in the following way:

It is easy to see Пφ(t) that the operators Пk(t) and choice 
or appointment  in the form

(3.5)

provide  optimization process with the asymptotic prop-
erties. The algorithms (3.1) and (3.2), taking (4.5) into 
account, take the form:

(3.6)

In the algorithms (3.6), the fi rst factors are the sensitivi-
ty functions.
The conditions determining the optimal values of the 
parameters of the matrices ϕ(t) and k(t) will be written 
on condition ϕ(t) = ϕ0; k(t) = k0 in the following way:

because

The positive defi niteness of the second derivatives 
demonstrates the possibility of attaining the minimum 
value  of the quality functional J1 (y(t), x̂(t1), for un-
known, but constant values of the parameters of the 
matrices a, b and in the process equation (2.10) when 
using algorithms of the form (3.6).
Consider the case when a(t) and b(t). We arrange the 
vectors a(t) and b(t) that have dimensions n2 × 1 and 
(n*m) × 1 from matrices elements a(t) and b(t) relatively. 

Taking into account the choice of the algorithms (3.6), 
we will get the following:

The condition 1 1
ˆ( ( ), ( )) 0d J y t x t

dt


 in this case is written in 
the following form

wherefrom, taking into account (4.6):

So, it gives us the condition for the algorithms of para-
metric optimization effectiveness (3.6):
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Thus, if this condition is fulfi lled when the parameters of 
the process generator (2.10) and the fi lter parameters 
(2.10) are modifi ed in accordance with the algorithms 
(3.6), the conditions for maintaining a suboptimal state 
are satisfi ed at least.

CONCLUSION

The algorithms for optimizing the observers of nonsta-
tionary processes with a quadratic functional of quality 
under the conditions of incomplete a priori informa-
tion are presented and investigated in this paper. The 
basement of all the obtained algorithms is the modifi ed 
Wiener-Hopf method. This method is a necessary and 
suffi cient condition for the minimum of the auxiliary 
functional, which is equivalent to the given functional, 
but contains only the available information. 
We have got the conditions for the successful systems 
optimization, written in the form of inequalities, which 
include the sensitivity of the functionals to changes in 
the perturbations and the response of the parameters 
extracted for parrying or / and compensating for these 
disturbances and their speed.  
The method on the basis of which the algorithms for op-
timizing observers were developed can be used both for 
solving problems of fi ltering non-stationary processes 
and for constructing algorithms for parametric identifi -
cation of non-stationary objects, and it means that the 
algorithm can be widely applied.
A lot of automation problems are solved by the use 
of robotic systems, in which accuracy is very import-
ant. Such systems are used in fl exible manufacturing 
systems, space researches. One of the basic elements 
of robotic systems is an electric drive, which helps to 
decrease  oscillations of the current stabilization and 
electromotor speed by the use of the above offered 
methods. The effi ciency of the offered algorithm in-
creases in 4 times. 
Another example of the use of the modifi ed Wie-
ner-Hopf method is the movement control of the space 
satellite, which is stabilizing without external distur-
bance. Output disturbance amplitude is in 30 times less 
then input output disturbance.
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